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The viscosity of a dilute suspension
of rough spheres
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We consider the flow of a dilute suspension of equisized solid spheres in a viscous
fluid. The viscosity of such a suspension is dependent on the volume fraction, c, of
solid particles. If the particles are perfectly smooth, then solid spheres will not come
into contact, because lubrication forces resist their approach. In this paper, however,
we consider particles with microscopic surface asperities such that they are able to
make contact. For straining motions we calculate the O(c2) coefficient of the resultant
viscosity, due to pairwise interactions. For shearing motions (for which the viscosity
is undetermined because of closed orbits on which the probability distribution is
unknown) we calculate the c2 contribution to the normal stresses N1 and N2. The
viscosity in strain is shown to be slightly lower than that for perfectly smooth spheres,
though the increase in the O(c) term caused by the increased effective radius due to
surface asperities will counteract this decrease. The viscosity decreases with increasing
contact friction coefficient. The normal stresses N1 and N2 are zero if the surface
roughness height is less than a critical value of 2.11× 10−4 times the particle radius,
and then become negative as the roughness height is increased above this value. N1

is larger in magnitude than N2.

1. Introduction
The study of suspensions of small particles has been of interest to scientists for

many years. When the particles are small enough that the suspending fluid may be
assumed to have no inertia, but not so small that Brownian motion need be taken
into account, some progress for dilute suspensions may be made without recourse to
large-scale simulations.

In this paper we study dilute suspensions of rough spherical particles in a Newtonian
fluid. It is well known (Einstein 1906, 1911) that a very dilute suspension of spheres,
whether rough or smooth (provided the roughness is small compared to the particle
radius), behaves to first order in the small volume fraction c as a Newtonian fluid
with effective viscosity µ(1 + 5c/2), where µ is the viscosity of the suspending fluid.

The corresponding calculation at order c2 is more difficult. For perfectly smooth
spheres, Batchelor & Green (1972a, b) calculated the stresses acting in particular flows,
but the rheology of the fluid depends on the history of the bulk flow and cannot be
simply expressed for all flows. For example, in simple shear flow two particles may
rotate endlessly around one another, causing a viscosity which is periodic in time. In
axisymmetric straining flows, on the other hand, the O(c2) term of the viscosity is
known in terms of mobility functions, which we define later, and the total or effective
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viscosity for equisized smooth spheres is

µ

(
1 +

5

2
c+

[
5

2
+

15

2

∫ ∞
2

J(s)q(s)s2 ds

]
c2 + O(c3)

)
. (1.1)

Because the calculation at O(c2) involves the interactions between pairs of particles,
the issue of microscopic particle roughness becomes important. It has been observed
(Batchelor & Green 1972b, p. 417),

‘. . . that in practice there may be departures from the theoretical formulae due to
small surface irregularities . . .’

Perfectly smooth spheres subject to finite forces in a continuum fluid can never come
into contact because of the lubrication forces between them. However, experiments
(Arp & Mason 1977; Zeng, Kerns & Davis 1996) have shown conclusively that, for
real particles which appear smooth to the naked eye, microscopic surface asperities
can cause interparticle contacts. These contacts break the reversibility condition which
is a property of Stokes flow, and can lead to an empty wake behind each particle
in some flows. The contacts can also (by conservation of particles) lead to surfaces,
fixed relative to one particle, on which there is a high probability of finding a second
particle. These two microstructural effects are expected to have repercussions for the
rheology of the suspension containing rough particles.

The rheology at order c2 will depend on the model chosen to describe the surface
asperities of the particles and the contact between them. There are three models in
common use (see, for example, da Cunha & Hinch 1996; Davis 1992): hard-sphere
repulsion, stick-rotate and roll-slip. Hard-sphere repulsion is a special case of the
roll-slip model, and experimental results shown by Zeng et al. (1996) suggest that the
roll-slip model is more realistic than the stick-rotate model. Thus, in this paper we use
the roll-slip friction model (including the frictionless limit of hard-sphere repulsion)
to investigate the rheology of a dilute suspension of rough particles.

In § 2 we pose the problem rigorously, and solve it as far as is possible for a general
imposed flow field. In § 3 we complete the calculation for axisymmetric straining
motions, and in § 4 for shear flows. Concluding remarks are given in § 5.

2. Formulation of the problem
We consider a Newtonian fluid of viscosity µ, containing neutrally buoyant sus-

pended solid spherical particles of radius a at volume fraction c. The particles are
force- and torque-free on a macroscopic level, as the only forces (other than hydro-
dynamic forces) acting on individual particles are short-range and symmetrical. We
allow for contact forces between the particles, which lead to no net force acting on
the system as a whole.

When two particles come into contact, they behave according to the roll-slip model
of Davis (1992). At an interparticle surface–surface separation hc = aζ, with ζ � 1,
their approach is halted by small surface asperities. They remain in contact (with
the minimum gap between their nominal surfaces equal to hc) for as long as the
net hydrodynamic forces acting on them are compressive. Once the hydrodynamic
forces act to separate the spheres, the contact breaks and there is no contact force;
the particles separate unhindered except by hydrodynamic forces. While the particles
are in contact, the normal contact force (the contact force acting parallel to the
line of centres) on each sphere is equal and opposite to the normal hydrodynamic
force on that sphere. The interaction forces in a direction tangent to the contacting
surfaces are then assumed to be a combination of hydrodynamic forces unaffected by
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surface roughness and contact, and a frictional contact force. The tangential friction
force depends both on the hydrodynamic forces and on a coefficient of friction, ν.
Essentially, if the magnitude of the normal force is large enough, then the particles
roll around one another with the frictional force balancing the hydrodynamic force
at contact. Otherwise a frictional force (of magnitude ν times the magnitude of the
normal force) is exerted to oppose the relative tangential motion, and the particles slip
around each other. In the limit ν = 0, the contact force only has a normal component
and is just a hard-sphere repulsion. This model has two dimensionless parameters, ν
and ζ, with typical physical values (Smart & Leighton 1989) of 10−3 < ζ < 10−2 and
(Zeng et al. 1996) 0.1 < ν < 0.4.

The detailed description of the problem (with smooth particles) can be found in
Batchelor (1967, pp. 246–253). Here we present only a shortened version.

The far-field velocity is imposed as the linear function

U∞ = Ω× x+ E · x, (2.1)

where Eij is a traceless and symmetric tensor. The suspension takes on this velocity
only in an average sense, as the presence of rigid particles and the interactions between
them affect the local flow.

The stress tensor at any point in the ambient fluid (with Newtonian viscosity µ) is
given by

Σij = −pδij + 2µEij + Σ
(p)
ij , (2.2)

where the particle stress (deriving from the rigidity of a particle in its interaction
with the surrounding suspension, and from interparticle forces) is summed over all
particles. The isotropic term is the pressure in the fluid, which is perturbed by the
presence of the particles (Brady 1993). Since the fluid is incompressible, however,
this pressure may be determined only up to an arbitrary constant and has no effect
on the flow. We choose not to investigate here the perturbation to it caused by
the presence of the particles. We expand the extra (particle) stress in powers of the
small volume concentration, c, while averaging over the volume of the suspension.
The leading-order term (which is O(c)) is derived from consideration of the extra
dissipation caused by an isolated sphere in the far-field flow U∞, and the O(c2) term
from binary interactions between pairs of particles. Following the work of Zinchenko
(1984), we can express the extra stress as

Σ(p) = 5cµE + 5c2µE

+
15c2µ

4πa3

∫
r>2a

[(
Sh(x0, x0 + r)

(20/3)πµa3
− E

)
p(r)− e(x0, x0 + r)

]
dr

+
9c2

32π2a6

∫
contact

Sc(x0, x0 + r)p(r)dr + O(c3), (2.3)

in which n = r/r,

Sh = 20
3
πa3µ{(1 +K(s))E + [(E · n)n+ n(E · n)]L(s)

+(n ·E · n)[nnM(s)− ( 2
3
L(s) + 1

3
M(s))I ]} (2.4)

is the stresslet due to the rigidity of one particle at x0 in the presence of a second
particle at x0 + r, with s = r/a, and p(r) is the pair distribution function: the
probability of finding a particle centred at x0 + r given that there is a particle
centred at x0 (normalized so that p(r) → 1 as r → ∞). The term e(x0, x0 + r) is
the perturbation to the rate-of-strain tensor at x0 caused by a single particle centred
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at x0 + r. It was devised by Batchelor & Green (1972b) to make the stress integral
uniformly convergent (so that it is valid to perform the integrations in any order),
and if the angle integrals are carried out first it does not contribute to the stress.
Thus, if the angle integrals are always performed before the radial integral, we have

Σ(p) = 5cµE + 5c2µE +
9c2

16π2a6

∫
contact

Sc(x0, x0 + r)p(r) dr

+
15c2µ

4πa3

∫
r>2a

[K(s)E + [(E · n)n+ n(E · n)]L(s)

+(n ·E · n)[nnM(s)− ( 2
3
L(s) + 1

3
M(s))I ]

]
p(r) dr + O(c3). (2.5)

The unfamiliar third term (derived in appendix A), ignoring the isotropic part, is

Sc(x0, x0 + r) = 1
2
as[1− A(s)](Fc · n)(nn− 1

3
I )

− 1
4
as[1 + B(s)− 2(yh11 + yh12)](Fcn+ nFc − 2nn(Fc · n)). (2.6)

The coefficient outside the integral of the force dipole is simply n2, where n is the
number density 3c/4πa3. The hydrodynamic functions A, B, J , K , L and M, as well
as xgαβ , ygαβ and yhαβ , have been thoroughly investigated in previous work (see, for
example, Kim & Karrilla 1991).

Before we can make further progress in identifying the pair-distribution function
(the major piece of missing information from the formulation above), we need to
find the relative velocities of two particles at specific relative positions, and the force
acting between them if they are in contact. In this way we use a trajectory-style
analysis to calculate the pair-distribution function. This ability is the major reason
why this calculation is easier than the corresponding problem in which Brownian
motion is not neglected (see, for example, Brady & Morris 1997). We consider the
interaction between two spheres, as specified above, labelled 1 and 2. We place particle
1 instantaneously at the origin of the linear flow field U∞ of (2.1), and particle 2 at
r. The dimensionless centre-to-centre vector is s = r/a, with modulus s. The particles
make contact at s = sc ≡ 2 + ζ (where ζ is the dimensionless roughness height).
Throughout this paper, we denote the value of a mobility function at this separation
as X∗ = X(s = sc).

2.1. Velocities

2.1.1. Particles not in contact

We define the mobility functions A and B via the equations governing the motion
of the centre of particle 2 relative to the centre of particle 1:

dr

dt
= V = as[Ω× n+ (1− B(s))E · n+ (B(s)− A(s))(n ·E · n)n]. (2.7)

The mobilities K , L and M are defined by the stresslet produced by particle 1 in the
presence of particle 2, given by (2.4), and all of the mobility functions are given in
Kim & Karrila (1991).

2.1.2. Particles in rolling contact

If we take the fluid velocities on the surface of the particles to be

u1 = U 1 + ω1 × x, (2.8)

u2 = U 2 + ω2 × (x− as), (2.9)
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then the condition for rolling motion (no relative motion at the point of contact,
x = ascn/2) is

U 2 = U 1 + 1
2
asc(ω1 + ω2)× n. (2.10)

The velocities of the two particles may also be derived from the grand mobility matrix
formulation (see, for example, Kim & Karrila 1991). The external flow field and the
contact forces and torques acting on each particle are combined to give the velocities.
In this case, if the contact force acting on particle 1 is Fc then the contact force on
particle 2 is −Fc and the torques are both ascn× Fc/2.

Substitution of the resulting forms for the velocities into (2.10) and some manipu-
lation yields the two conditions

β1(I − nn) ·Fc = −µa2β2(I − nn) ·E · n (2.11)

and

β3Fc · n = µa2sc(1− A∗)n ·E · n, (2.12)

where the constants βi, which derive from the scalar two-sphere mobility functions,
are given in Appendix B.

The relative velocity of the two particles is

V r = asc[Ω× n+ β4(I − nn) ·E · n], (2.13)

and we can also compute the contact stresslet, using (2.6), and neglecting the term
(1−A∗)2/β3 which is O(ζ) for solid spheres (and asymptotically small even for liquid
drops):

Scr = µa3β2β5

4β1

[(I − nn) ·E · nn+ n(I − nn) ·E · n]. (2.14)

2.1.3. Particles in slipping contact

For two particles in slipping contact, the normal contact force is the same as it
would be for rolling, but the tangential force, while in the same direction, is limited
in magnitude by ν times the magnitude of the normal force:

(I − nn) ·Fc = ν(n ·Fc) (I − nn) ·E · n
|(I − nn) ·E · n| . (2.15)

For simplicity, we assume that the coefficients of rolling and slipping friction are the
same. Substituting the normal force from (2.12), we obtain

Fc = µa2 sc(1− A∗)
β3

(n ·E · n)
[
n+ ν

(I − nn) ·E · n
|(I − nn) ·E · n|

]
. (2.16)

We can deduce the relative velocity of slipping contact:

V s = asc

[
Ω× n+

{
1− B∗ − νβ6(n ·E · n)

|(I − nn) ·E · n|
}

(I − nn) ·E · n
]
. (2.17)

We can also (as for rolling) compute the contact stresslet, neglecting terms of O(ζ):

Scs = −µa3 sc(1− A∗)β5ν

4β3

(n ·E · n)
{

(I − nn) ·E · nn+ n(I − nn) ·E · n
|(I − nn) ·E · n|

}
. (2.18)

The form of the friction model is such that the physical boundary between rolling
and slipping motion is given by the position at which the relative velocity of the two
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spheres would be the same in rolling and slipping:

(1− B∗ − β4)|(I − nn) ·E · n| = νβ6(n ·E · n). (2.19)

2.2. Pair-distribution function

The pair-distribution function p(r) is defined as the probability of finding a particle
centred at position r given that the test particle (particle 1) is centred at the origin.
Because this function depends on the flow history, little can be ascertained about it
without specifying the flow field.

In general, for each specific flow there will be five distinct regions of space in which
to determine the probability distribution. These are:

(i) the bulk of space, for which the particle trajectories are unaffected by micro-
scopic particle roughness and the probability distribution is the same as for the same
flow containing smooth spheres;

(ii) the empty wake behind the particle of interest;
(iii) that part of the surface s = sc on which two particles are in rolling contact;
(iv) that part of the surface s = sc on which two particles are in sliding contact;

and
(v) a surface in space separating region (i) from the empty wake (ii), if such a

wake exists.
In each of these regions, the probability distribution is governed by the Liouville
equation (Batchelor & Green 1972b) (which is the high-Péclet-number form of the
Smoluchowski equation):

∇ · [p(r)V (r)] = 0. (2.20)

The pair-distribution function may be known for part or all of the bulk region.
It was shown by Batchelor & Green (1972b) that, for any material point which has
come from infinity during the history of the flow, and has not been involved in a
contact, the probability density at that point may be expressed as

p(r) = q(s), (2.21)

in which s = r/a,

1/q(s) = (1− A(s))φ3(s), (2.22)

φ(s) = exp

[∫ ∞
s

A(s′)− B(s′)
1− A(s′)

ds′

s′

]
, (2.23)

and q(s) → 1 as s → ∞. To find the probability density in any other region requires
us first to specify the imposed flow field.

3. Axisymmetric straining flow
Our first flow field is a straining motion, U∞ = E · r, and we specify

E =

 E 0 0
0 E 0
0 0 −2E

 . (3.1)

The case E > 0 is an axisymmetric straining motion with fluid entering along the
z-direction and leaving in the (x, y)-plane. In the case E < 0 the fluid enters in the
(x, y)-plane and leaves in the z-direction. We define θ to be the angle subtended with
the z-axis.
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2

2 + ζ

α

β

γ

Figure 1. Trajectories of the centre of particle 2 relative to the centre of particle 1 in axisymmetric
straining flow. When E > 0 (biaxial expansion) the z-axis of symmetry is vertical in the diagram;
when E < 0 (uniaxial expansion or biaxial contraction) it is horizontal. In either case the pattern
of trajectories is made three-dimensional by rotation about the z-axis. The dimensionless roughness
height ζ is inflated for illustrative purposes.

The trajectories swept out by the centre of particle 2 (relative to the centre of
particle 1) are shown schematically in figure 1. Note that, when the trajectory for
smooth spheres reaches the boundary s = 2 + ζ, it is deflected. Outside the limiting
trajectory αγ, along which the two particles just come into contact (at β), the behaviour
of the system is exactly as it would be for perfectly smooth spheres.

The contact point β subtends an angle θ0 with the z-axis; this angle is where
n ·E · n = 0, i.e. θ0 = arctan (

√
2). Along trajectories which would, for smooth spheres,

have the two spheres passing within a gap width less than ζ of each other, the particles
come into contact and the model of Davis (1992) is used to determine the behaviour
of the doublet of contacting particles. The particles remain in contact while they
are in the compressive quadrant of the flow, and as they pass into the extensional
quadrant of the flow they will separate, behaving as smooth spheres once the contact
is over. It is important to note the ‘shadow’ region in the wake of particle 1 (shaded
in figure 1), which exists because the particle–particle contacts support compressive
but not tensile forces; the pair density function p will be zero in this region. On its
border (trajectory βγ) there will be a high density of particles; this (two-dimensional)
sheet region contains all the trajectories of particles which, in the smooth case, would
have given trajectories in the (three-dimensional) shadow region.

3.1. Calculation of the pair-distribution function

The domain of interest can be divided up into three types of regions for calculation
of the pair density p. First we have forbidden regions. These volumes have p = 0, and
are given by the ‘excluded volume’ region s < 2 + ζ and the shadow region (region (ii)
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of § 2.2). Second, we have the volume (region (i) of § 2.2) in which the probability is
just as it would be if the spheres were perfectly smooth. This region is all of s > 2+ ζ,
except for the shadow region and its border. Finally, we have surface regions of
high probability density, which result from particle–particle contact. In effect, these
surfaces are where the excess probability density from the forbidden regions is to
be found. On each such surface, we have a surface pair density function to describe
the motion of the particles. The first surface (region (iii)) is part of the compressive
quadrant of the boundary s = 2 + ζ, on which the particles are in rolling contact
and we have surface density P r . In the rest of the compressive quadrant (region (iv)),
the particles are in slipping contact, and we have surface probability density P s. The
third surface is the outer border of the shadow region (region (v)), given by rotating
the curve βγ and its reflection in the (x, y)-plane about the z-axis. On this sheet, we
have a pair density P sh . All three of these surface densities have dimensions of length
(volume per area).

3.1.1. Bulk region

In the bulk, all the trajectories have come from infinity, and so (2.21) gives

p(s) = q(s) (3.2)

for s > 2 + ζ, except in the shadow region or on its border.

3.1.2. Contact regions

We note that there is a flux of particle pairs onto the compressive quadrant of
the surface s = sc ≡ 2 + ζ; the dimensionless flux is given by q(sc)Vr(sc). The radial
component of the relative velocity is

Vr = as(1− A)(n ·E · n), (3.3)

and thus, since the surface densities P r (and P s) are defined by the Liouville balance
equation, we have

∇s · [P rV r] = −q(s)Vr = −ascφ−3(sc)n ·E · n, (3.4)

where ∇s · u is the surface divergence of u, which may be expressed as

∇s · u =
1

as sin θ

∂(sin θuθ)

∂θ
(3.5)

if u = uθeθ . Substituting the form of E into (2.17) and (2.13), we obtain the relative
velocities of the two particles when in rolling and slipping contact, respectively:

V r = 3aβ4scE sin θ cos θeθ, (3.6)

V s = ascE[3(1− B∗) sin θ cos θ ∓ νβ6(1− 3 cos2 θ)]eθ, (3.7)

with the upper sign corresponding to the case E > 0.
There is a critical value of θ at which slipping begins. In the case E > 0 we have

purely rolling motion for θ < θ+
c , while for θ > θ+

c there is some slipping. If E < 0
the rolling occurs for θ > θ−c . The critical angle in each case is given by the point
where the two velocities are identical (2.19):

3(β4 + B∗ − 1) sin θ±c cos θ±c = ∓νβ6(1− 3 cos2 θ±c ), (3.8)

within the limits

0 < θ+
c < θ0 < θ−c < π/2. (3.9)
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In the rolling region, we solve (3.4) with velocity (3.6) to obtain

P r =
asc

3β4φ3(sc)
, (3.10)

in which we have neglected the general solution P r = sin−2 θ cos−1 θ because it
generates an unphysical surface source at θ = 0 (for E > 0) and θ = π/2 (for E < 0).
In the slipping region we solve (3.4) with velocity (3.7) for the probability

P s =
asc sin θ cos θφ−3(sc)

[3(1− B∗) sin θ cos θ ∓ νβ6(1− 3 cos2 θ)]
. (3.11)

In this case, the coefficient of the complementary solution is shown to be zero by
matching P r and P s at θ = θc.

3.1.3. Sheet region

The surface bordering the shadow region is given, in polar coordinates, as

s3 sin2 θ cos θ = Ccrφ
3(s), Ccr = 2(27)−1/2s3cφ

−3(sc). (3.12)

In this region, we can once more use the Liouville equation:

∇s · [P shV ] = 0, (3.13)

with the gradient taking place along the sheet surface, and, because the particles are
no longer in contact, the relative velocity of the two particles is

V = as[(1− B(s))E · n+ (B(s)− A(s))(n ·E · n)n]. (3.14)

The upstream boundary condition is

P sh
0 = P s

θ0
=

asc

3φ3(sc)(1− B∗) . (3.15)

Equation (3.13) may be thought of as governing the flow of a fluid whose density
at each point is given by P sh . Then (3.13) is a condition of mass conservation of this
fluid, and equivalently we may state that the flux of this fluid through each s-station
in unit time is independent of s. Integrating between two arbitrary values of s and
applying the divergence theorem, it may be shown that P sh |V |s sin θ is constant.
Applying the upstream boundary condition, and noting that 1−B∗ > 0, we may write

P sh |V |s sin θ =
2a2s3c

(27)1/2φ3(sc)
|E|. (3.16)

3.2. Form of the extra stress

We seek to evaluate the integrals in (2.5). As discussed in § 2, the term in (2.3)
involving e(x0, x0 + r) may be neglected provided that the angular integrations are
carried out before the radial integration. We note that the axial symmetry of the flow
and various regions implies that Σ(p)

11 = Σ
(p)
22 and Σ

(p)
ij = 0 if i 6= j. Since the pressure

of the entire system is arbitrary because of the incompressibility condition, and does
not affect the flow of the suspension, we neglect isotropic terms and consider only the
deviatoric part of the extra stress. The condition tr (Σ) = 0 then requires Σ11 = − 1

2
Σ33,

and so the deviatoric stress is a scalar multiple of the global rate of strain:

Σij = 2µ∗Eij , (3.17)
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where µ∗ is the effective viscosity of the suspension. We can sum the contributions
from all our regions, to express the result as

µ∗ = µ
(
1 + 5

2
c+ c2

[
5
2

+ kbulk + kroll + kslip + ksheet

]
+ O(c3)

)
, (3.18)

which is sufficient to specify all of the deviatoric stress components.

3.2.1. Bulk region

We start with the contribution from the bulk, in which Sc =  and p(r) = q(s):

kbulk = − 15

8πa3

∫
bulk

(−2K(s) + [−4 cos2 θ]L(s)

+ (1− 3 cos2 θ)[cos2 θM(s)− ( 2
3
L(s) + 1

3
M(s))]

)
q(s)dr. (3.19)

Carrying out the angle integrals yields

k±bulk =
15

2

∫ ∞
sc

J± ∓ v± [K + 1
3
(v2
± + 1)L+ 1

6

(
9
5
v4
± − 2v2

± + 1
)
M
]
q(s)s2ds, (3.20)

in which the upper sign corresponds to E > 0,

J+(s) = K(s) + 2
3
L(s) + 2

15
M(s), J−(s) = 0, (3.21)

and

v±(1− v2
±) = Ccrφ

3(s)/s3, 0 < v+ < 3−1/2 < v− < 1. (3.22)

3.2.2. Rolling surface

The next contribution comes from that part of the compressive contact region in
which the spheres are in rolling contact. Using (2.3) and (2.14),

Σ(p)
roll =

15c2µ

4πa3

∫
roll

P r [K(s)E + [(E · n)n+ n(E · n)]L(s)

+(n ·E · n)[(nn− 1
3
I )M(s)− 2

3
L(s)I ]

]
dS

+
9c2µ

16π2a3
1
4
(β2β5/β1)

∫
roll

[((I − nn) ·E · nn+ n(I − nn) ·E · n)]P r dS. (3.23)

This region is given by 0 < θ < θ+
c and π−θ+

c < θ < π for E > 0, which gives double
the contribution from the 0 < θ < θ+

c region, and θ−c < θ < π − θ−c for E < 0, which
gives double the contribution from the region θ−c < θ < π/2, and the volume integral
was converted to a surface integral by posing

P r = p dr = ap ds

in the immediate vicinity of the rolling surface. Thus dS = a2s2 sin θ dθ dφ.
Now we substitute our calculated probability, (3.10), to obtain

k±roll =
3β2β5s

3
c

2560πβ1β4φ3(sc)
[30C±1 + 10C±3 − 3C±5 ]

+
s3c

192β4φ3(sc)
[10C±1 (48K∗ + 28L∗ + 5M∗)

+5C±3 (8L∗ +M∗) + 9C±5 M
∗], (3.24)

in which we have denoted X∗ ≡ X(sc) for X = K , L or M, and

C+
n = 1− cos nθ+

c , C−n = cos nθ−c . (3.25)
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3.2.3. Slipping surface

The next contribution we consider comes from the rest of the contact surface, i.e. the
region of slipping, which is equivalent to twice the region θ+

c < θ < θ0 = arctan (
√

2)
if E > 0 and twice θ0 < θ < θ−c if E < 0. Using (2.18) and (3.11), the analysis proceeds
as in the rolling case to obtain

kslip = − 9s4c
32πφ3(sc)

ν(1− A∗)β5

β3

[I±2 − 3I±4 ]

+
5s3c

4φ3(sc)
[(6K∗ + 2L∗ +M∗)I±1 + 6(L∗ −M∗)I±3 + 9M∗I±5 ], (3.26)

where X∗ = X(sc), as before, and

I±n =


±
∫ θ0

θ±c

sin2 θ cosn θ dθ

[3(1− B∗) sin θ cos θ ∓ νβ6(1− 3 cos2 θ)]
for n odd,

∫ θ0

θ±c

sin3 θ cosn θ dθ

[3(1− B∗) sin θ cos θ ∓ νβ6(1− 3 cos2 θ)]
for n even.

(3.27)

3.2.4. Sheet region

The final contribution to our integral comes from the sheet which separates the
bulk and shadow regions:

Σ(p)
sheet =

15c2µ

4πa3

∫
sheet

(
S(x0, x0 + r)

(20/3)πµa3
− E

)
P shdS, (3.28)

with S defined in (2.4), the conversion to a surface integral being

dS = a2|V |sin θ
Vs

s ds dφ, P sh = p(r)a dθ, (3.29)

and the integral being carried out along the sheet surface

s3 sin2 θ cos θ = Ccrφ
3(s) ≡ 2s3cφ

3(s)φ−3(sc)/271/2. (3.30)

This surface is described by cos θ = v±(s), with v±(s) given by (3.22). We have

ksheet =
15

4πa3

∫
sheet

(
K(s) + 2 cos2 θL(s)

− 1
2
(1− 3 cos2 θ)[cos2 θM(s)− ( 2

3
L(s) + 1

3
M(s))]

)
P shdS. (3.31)

Now the probability is given by (3.16), and the relative velocity along the line of
centres may be expressed as

Vs = dr/dt = as[(1− A(s))n ·E · n] = aEs(1− A(s))(1− 3 cos2 θ). (3.32)

Thus,

k±sheet =
5s3c√

3φ3(sc)

∫ ∞
sc

[
K + 1

3
(3v2
± + 1)L+ 1

6
(3v2
± − 1)2M

] ds

s(1− A)|1− 3v2±|
. (3.33)

3.3. Summary of viscosity results

Throughout this section, the upper sign corresponds to E > 0 and the lower to E < 0.
The viscosity is given by

µ± = µ
[
1 + 5

2
c+ k±c2 + O(c3)

]
, (3.34)
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in which

k± = 5
2

+ k±bulk + k±roll + k±slip + k±sheet (3.35)

and the individual terms are given by (3.20), (3.24), (3.26) and (3.33).

3.3.1. Comparison with drops

In order to check our work as far as possible, we compare our results with a
similar calculation for spherical drops which come into contact due to their interfacial
mobility but are not allowed to coalesce (Zinchenko 1984, equation (2.12)). If we put
ν = 0, then there is no tangential friction between the particles and their interaction
should be similar to that between two drops. The information that the spheres are
fluid or solid is contained in the form of the mobilities, and so if we set sc = 2 without
using any other information, we should have the correct form for two fluid drops.

The critical angles become θ+
c = 0, θ−c = π/2. The C±n terms used in our expressions

all become zero, and, if we denote (I±j )′ =
√

3I±j /(1− B∗), then

(I+
1 )′ = (

√
3− 1)/3, (I−1 )′ = 1/3,

(I+
2 )′ = 2

√
2/27, (I−2 )′ = (2

√
2− 3

√
3)/27,

(I+
3 )′ = (3

√
3− 1)/27, (I−3 )′ = 1/27,

(I+
4 )′ = 2

√
2/45, (I−4 )′ = 2(

√
2−√3)/45,

(I+
5 )′ = (9

√
3− 1)/135, (I−5 )′ = 1/135.

(3.36)

Our viscosity result becomes

k± =
5

2
+

20

φ3(2)(1− B∗)
[
J∗± ∓ 1√

3

(
K∗ + 4

9
L∗ + 4

45
M∗)]

+
40√

3φ3(2)

∫ ∞
2

[
K +

(
v2
± + 1

3

)
L+ 1

6
(3v2
± − 1)2M

] ds

s(1− A)|1− 3v2
+|

+
15

2

∫ ∞
2

{
J± ∓ v± [K + 1

3
(v2
± + 1)L+ 1

6
( 9

5
v4
± − 2v2

± + 1)M
]}
q(s)s2ds, (3.37)

which agrees with Zinchenko’s work when we note that Zinchenko’s + corresponds
to our – and vice versa, and for solid spheres, Zinchenko’s α = 1.

Both (3.37) and Zinchenko’s (2.12) may be further simplified for the case of fully
smooth, solid spheres by noting that φ(s)→∞ as s→ 2 for solid spheres, and v+ = 0,
v− = 1, yielding equation (5.6) of Batchelor & Green (1972b),

k± =
5

2
+

15

2

∫ ∞
2

J(s)q(s)s2ds. (3.38)

3.3.2. Numerical results and discussion

An example set of results is shown in figure 2, with k± plotted against ν for four
sample values of ζ. As expected, the limit ζ → 0 is that of smooth spheres, for which
k+ = k− = ksmooth ≈ 6.9, independent of ν. Batchelor & Green (1972b), Zinchenko
(1984) and Kim & Mifflin (1985) reported ksmooth = 7.6, 7.0 and 7.1, respectively, with
the small differences due to the accuracies of the mobility functions employed. The
latter two are thought to be the most accurate, and our result 6.9 uses a combination
of the mobility data from Kim & Mifflin (1985) and far- and near-field asymptotics.
Perhaps surprisingly, the viscosities decrease with increasing friction coefficient, ν.
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Figure 2. Plots of the c2 viscosity coefficients (a) k+ and (b) k− against the friction coefficient ν for
ζ = 10−7, 10−5, 10−3 and 10−2 (top to bottom).

The viscosity is always lower for rough spheres than for smooth ones, with the
effect being more marked for larger roughness heights and for higher coefficients of
friction.

In figure 3, we plot the individual contributions to the overall viscosity coefficient.
Figure 3(a) shows the reduction caused by the excluded region 2 < s < sc, expressed
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Figure 3. The contributions to the c2 viscosity coefficient k± from the (a) excluded volume,
(b) sheet and wake, (c) rolling contact and (d ) slipping contact regions of the straining flow. Since
the contributions from the excluded region s < sc, the sheet and the wake are independent of ν, (a)
and (b) are plotted against ζ. In (b) the upper curve is for E > 0 and the lower for E < 0. Parts
(c) and (d ) are plotted against ν for ζ = 10−2, 10−3, 10−5 and 10−7 from top to bottom, and the
contributions for E < 0 are solid curves where those for E > 0 are dotted.

as a negative term,

kexc = −15

2

∫ sc

2

J(s)q(s)s2 ds =
15

2

∫ ∞
sc

J(s)q(s)s2 ds− ksmooth ,

representing the isotropic part of the contribution from the bulk region for rough
spheres minus that for smooth spheres. This reduction is relatively large in magnitude,
reaching −1.1 at ζ = 10−2. Because both the excluded volume region and the
smooth-sphere probability distribution are spherically symmetric and do not depend
on the sign of E, kexc is independent of the sign of E. The contribution shown
in figure 3(b) from the sheet and wake regions combined contains the remainder
of the contribution from the bulk (a negative contribution from the empty wake,
kwake = kbulk − (ksmooth + kexc)) added to the sheet region, which gives a positive
contribution. The combination of the two terms is always negative.

Figures 3(c,d ) show the contribution to the dissipation from the rolling and slipping
contact regions, respectively. Because they are derived from the particle contacts, the
dissipation values depend on ν as well as ζ. The dissipation due to rolling increases as ν
increases, primarily because the area of the contact surface in which rolling occurs in-
creases. Similarly, the dissipation due to the slipping region decreases with increasing ν.
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Figure 4. Plot of the c2 viscosity coefficient k± against the dimensionless roughness height ζ in the
limits ν → 0 (no friction) and ν → ∞ (no slipping). The curves for E > 0 (biaxial expansion) are
solid for ν = 0 and short dashed for ν → ∞; the curves for E < 0 (uniaxial expansion) are long
dashed for ν = 0 and dot-dashed for ν →∞.

However, the dissipation due to slipping is up to two orders of magnitude greater than
that due to rolling. This is because, when two particles are in rolling contact, the thin
film of fluid between them does not undergo a shear flow, whereas in slipping motion
it does and the resulting lubrication stress is the primary contribution to the slipping
stress. As a result, increasing the friction coefficient lowers the total dissipation.

The lowest viscosity (i.e. the greatest deviation from the smooth-sphere viscosity)
for a specific roughness height is at ν = ∞, the limit in which all contact motion is
rolling. In figure 2 we observe that, as ν increases, the curves asymptote to a value
lower than the smooth limit. Thus, in figure 4 we plot the limits of k± for ν = 0 and
ν →∞ over a broad range of ζ. We observe that, in all four cases (ν → 0 and ν →∞,
E > 0 and E < 0) the results are qualitatively similar, yielding a viscosity considerably
lower than that for smooth spheres. In all cases, the viscosity for ν →∞ is lower than
that for ν → 0 and the viscosity for E < 0 is lower than that for E > 0. For very
small roughness heights we can see that, as expected, all four viscosity coefficients
converge to the same value ksmooth ≈ 6.9; however, the difference is significant even
for ζ = 10−6 (for which a particle of 0.1 mm radius is molecularly smooth), and so
roughness is expected always to play a rôle.

There is another possible effect of surface asperities on the viscosity of the suspen-
sion. The change in the maximum radius of each sphere may cause extra dissipation
in the O(c) term, which is caused by the dissipation around each particle in isolation.
By the minimum dissipation theorem, the dissipation caused by any rough particle
with maximum diameter 2a(1 + ζ) is bounded above by the dissipation caused by a
smooth sphere with exactly that diameter. We therefore assume this value (the sphere
has effective radius aeff = a(1 + ζ)) as a worst case, in order to estimate the maximum
effect of this dissipation. The effective volume concentration, which is proportional to
a3

eff , increases by a factor of 1+3ζ for ζ � 1. Thus, our full adjusted viscosity becomes

µ± = µ[1 + 5
2
c(1 + 3ζ) + k±c2 + O(c3)]. (3.39)

The two terms which change the viscosity from the smooth sphere case are

∆µ± = cµ[ 15
2
ζ + (k± − ksmooth)c], (3.40)



354 H. J. Wilson and R. H. Davis

and so the O(c2) correction due to roughness is dominant for small roughness heights
and/or large particle concentrations. For illustration, we choose a roughness height of
ζ = 2× 10−3 and a friction coefficient ν = 0.25, which are typical of values measured
for glass and plastic spheres (Smart & Leighton 1989; Smart, Beimfohr & Leighton
1993; Zeng et al. 1996). In this case, k+ − ksmooth = −0.6 and k− − ksmooth = −0.8, so
that the O(c2) term is more important if c > 0.025 for the biaxial expanding flow and
c > 0.019 for the biaxial contracting flow (bear in mind that the O(c) term in (3.40)
is an upper limit). These constraints both fall within the restriction of the analysis to
dilute suspensions.

4. Simple shear flow
4.1. Introduction

For our second study, we consider simple shear flow, given in the absence of particles
by U∞ = (γ̇y, 0, 0); that is, (2.1) with

Ω = 1
2
γ̇(0, 0, −1), (4.1)

E = 1
2
γ̇

 0 1 0
1 0 0
0 0 0

 . (4.2)

We assume that γ̇ > 0 throughout this section, with the symmetry of the problem
providing the results for γ̇ < 0: if γ̇ → −γ̇ then Σ12 → −Σ12, and the other stress
terms are unchanged, and so the viscosity and normal stresses are unchanged.

Let us consider simple shear flow containing two spheres, one of which is centred
at the origin. The relative trajectories (Zinchenko 1984) are given by

y2 = a2φ2(s)[ξ2 +Ψ (s)], z = aφ(s)ξ3, (4.3)

in which

Ψ (s) =

∫ ∞
s

B(s′)s′ ds′

(1− A(s′))φ2(s′)
(4.4)

and φ(s) is as defined in (2.23). Along each individual trajectory, ξ2 and ξ3 are
constant.

We use the Cartesian coordinates (x, y, z) given above in parallel with spherical
polar coordinates (s, θ, φ) given by

x = as cos θ, (4.5)

y = as sin θ cosφ, (4.6)

z = as sin θ sinφ. (4.7)

Using these coordinates, we note the following equalities:

n ·E · n = γ̇ sin θ cos θ cosφ, (4.8)

(I − nn) ·E · n = 1
2
γ̇

 sin θ cosφ(1− 2 cos2 θ)

cos θ(1− 2 sin2 θ cos2 φ)

−2 sin2 θ cos θ sinφ cosφ

 . (4.9)

In the absence of surface irregularities, there are two types of relative trajectories:
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(a)

(b)

Figure 5. Trajectories in the (x, y)-plane of the centre of particle 2 relative to particle 1 in shear
flow, (a) when all closed orbits pass within the contact surface, and (b) when some closed orbits
are entirely outside the contact surface. The bold trajectory represents symbolically the trajectory
dividing closed orbits from open trajectories. The dotted circle represents the contact surface
s = sc ≡ 2 + ζ. The shaded region represents forbidden areas where there will be no particles once
the flow is well-established; and on the edge of this region there may be a high density of particles.

open trajectories which arrive from infinity and depart to infinity;
closed trajectories or cycles. These form the symmetric region

s2 sin2 θ cos2 φ < φ2(s)Ψ (s). (4.10)

The pair density function is not known for the closed orbits, and so the O(c2) viscosity
correction is indeterminate (Batchelor & Green 1972b).

When the surfaces of the spheres exhibit surface irregularities, however, the pattern
of relative trajectories is more complicated. Typical surface asperities have height
around 10−3–10−2 of a particle radius (Smart & Leighton 1989). For two spheres
interacting in the (x, y)-plane, this size is large enough that all the closed orbits in
that plane will be affected by contact, and so their symmetry will be broken and the
indeterminacy they cause is abolished. This scenario is illustrated in figure 5(a).

On the other hand, when the two particles are initially offset in the z-direction, the
region of the contact surface which intersects with the sheet of trajectories of sphere
2 is much smaller (sometimes nonexistent), and there will be entire closed trajectories
which pass outside it. This case is shown in figure 5(b). It is important to note that
both of these streamline patterns can occur simultaneously in the same flow. Indeed,
for any roughness height large enough to break some closed trajectories, there will be
both patterns in the same flow, as there are closed orbits whose distance of closest
approach is arbitrarily large. This means that the viscosity is always undetermined
(as discussed in § 4.2).
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If the height of the surface asperities is very small (i.e. the particles are exceptionally
smooth), it is possible for all of the contact surface to fall within the region of
closed trajectories. This case occurs when the minimum distance of approach of the
trajectory dividing closed orbits from open trajectories is greater than the roughness
height. Mathematically, it requires that

φ2(sc)Ψ (sc) > s2c , (4.11)

and we have determined (using a numerical interpolation) that this inequality is
satisfied when ζ < 2.110× 10−4. This roughness height is much smaller than typically
encountered, and so it is reasonable to expect that there will be some open trajectories
which intersect the contact surface. In this case, as discussed by Rampall, Smart &
Leighton (1997), the probability distribution may be calculated in the plane of shear,
and so the viscosity of a monolayer suspension of spheres may be calculated exactly.
However, if the roughness height is smaller than the distance of closest approach
(ζ < 2.110× 10−4), then the surface roughness has no effect, the analysis of Batchelor
& Green (1972b) is still valid, and the normal stress differences are zero.

4.2. Calculation of the pair-distribution function

In order to calculate the probability distribution p in simple shear flow, we must
consider the following regions of the flow:

the bulk of the flow: trajectories which originate at infinity and either reach the
contact surface or depart to infinity without ever intersecting the contact surface;

closed orbits which do not intersect the contact surface;
the shadow region in which no particles can be found because of contacts which

exert compressive but not tensile forces; here p(r) = 0;
the rolling region of the contact surface;
the slipping region of the contact surface;
the border of the shadow region.

The first two of these regions correspond to region (i) of § 2.2; the probability density
there is unaffected by particle friction.

Unfortunately, the probability distribution is not known on the closed orbits. This
fact prevents us, as it prevented Batchelor & Green (1972b) and Zinchenko (1984),
from calculating exact viscosity values in this flow unless some distribution is assumed
at a given instant in time. To demonstrate the problem of undetermined probabilities
in the closed-orbit region, we have chosen two plausible distributions for smooth
spheres. In the first case, we take the probability distribution to be p(r) = q(s)
everywhere, a distribution which is continuous at the edge of the region of closed
orbits. As shown by Batchelor & Green (1972b), the c2 viscosity coefficient in this case
is k = 2.5+7.5

∫
Jqs2 ds ≈ 6.9. In the second case, we assume that the region of closed

orbits is well-stirred initially, so that p = 1 inside this region. As time passes, the
probability distribution within the region of closed orbits will fluctuate, but effectively
it will oscillate about this value. Therefore it is reasonable to consider a distribution
in the outer region which has settled down to its long-term value of p = q, while the
closed-orbit region instantaneously has p = 1. This distribution gives an instantaneous
coefficient of k ≈ 5.9. Since the difference between these two situations is comparable
to the change in the c2 viscosity coefficient due to roughness obtained for extensional
flow, we cannot hope to deduce definitive information about the effect of surface
roughness on the shear viscosity by performing further calculations. Indeed, these
calculations would entail a considerable amount of work for conclusions which
would be uncertain at the very best.
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However, as we shall see, the normal stresses N1 = Σ11 − Σ22 and N2 = Σ22 − Σ33

are unaffected by the probability distribution on the closed orbits. We may calculate
them without making any further assumptions.

4.2.1. Bulk region

In the first region described above, the fact that the particles are not smooth has
no effect on the flow, and the particle trajectories are coming from infinity, and so
(2.21) applies. The velocity in the first region is given by (2.7), and so the flux of pairs
from this region onto the contact surface is given by

q(sc)Vr(sc) = aq(sc)sc(1− A(sc))(n ·E · n). (4.12)

In the region of closed orbits, however, the argument used by Batchelor & Green
(1972b) can only give us

p(r) = C(ξ2, ξ3)q(s), (4.13)

where ξ2, ξ3 are the invariants of (4.3), and no information is available about the form
of C(ξ2, ξ3) unless other effects (such as Brownian motion or longer-range forces) are
included.

4.2.2. Contact surface

On the rolling portion of the contact surface, the relative velocity of the two spheres
is given by (2.13), and that for slipping is given by (2.17). The boundary between
rolling and slipping is the point at which the velocity is the same by either mechanism
(2.19):

(1− B∗ − β4)|(I − nn) ·E · n| = νβ6(n ·E · n), (4.14)

which turns out, for realistic values of ν (ν 6 0.5, say), to encompass a very small
region of the contact surface. Most of the contact surface, therefore, is a slipping
region. In particular, the boundary condition P c = 0 on the edge of the forbidden
region must be applied to the edge of the slipping region.

Unfortunately, the form of |(I − nn) ·E · n|, when expressed in terms of the angles θ
and φ, is sufficiently complicated that the partial differential equation which results
from the Liouville equation in this case cannot be solved analytically. In turn, the
boundary conditions for the rolling region are not known analytically, so that region
must also be investigated numerically.

Here, we give the pair of equations which must be solved numerically. To construct
them, first we substitute E , Ω and n into the forms of V (2.13), (2.17). We express all
the quantities in trigonometric terms and use X = sinφ and Y = sin θ, substituting
into the Liouville equation

∇ · [P cV ] = −asγ̇φ−3(sc) sin θ cos θ cosφ, (4.15)

to obtain

∂

∂X
(P cX[1− α(X,Y )])− ∂

∂Y
(P cY [1− (1− 2Y 2)α(X,Y )]) = −4aφ−3(sc)Y

2, (4.16)

in which

α(X,Y ) =

{
β4 for rolling
1− B∗ + νβ6Y /|f(X,Y )| for slipping

(4.17)

and

f2(X,Y ) =
[(1− 2Y 2)2 +X2Y 2(3− 4Y 2)]

4(1−X2)(1− Y 2)
. (4.18)
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This equation is solved numerically in the region

{0 6 X 6 1; 0 6 Y 6 1} ∩ {Y 2(1−X2) > φ2(sc)Ψ (sc)/s
2
c}

using the method of characteristics, with boundary condition P c = 0 on the edge
of the forbidden region, where Y 2(1 − X2) = φ2(sc)Ψ (sc)/s

2
c . The solution can be

extrapolated to the rest of the contact surface using symmetry considerations.

4.2.3. Border of the shadow region

The border of the shadow region may consist of
closed orbits, on which we cannot determine the probability density without ad hoc

assumptions (figure 5b), and
two surfaces in the wake of sphere 1, of finite extent in the y- and z-directions, and

semi-infinite in the x-direction (figure 5a).
We consider only the case when the latter two surfaces exist (though there will also
be closed orbits), since the results when there are only closed orbits are exactly the
same as for smooth spheres.

In a similar manner to that used in § 3, we note that, since there is no flux
of probability onto or off the sheet, the Liouville equation is equivalent to mass
conservation on the sheet. We parameterize the sheet using the trajectory length, l,
and the azimuthal angle at the point of detachment, φ̃. We also define a quantity dh
to be the length element on the sheet perpendicular to the velocity.

We consider a narrow band of trajectories leaving the sphere, and integrate the
Liouville equation (3.4), with velocity (2.7) over the section of the surface they pass
through between leaving the sphere and having travelled a dimensionless distance l.
We apply the divergence theorem, noting that the contribution from edges parallel to
V is zero, and using n = V /|V | on the remaining edges and the upstream boundary
conditions,

P sh |V | dS = 1
2
a2P sh

0 s
3
c(2− B∗)γ̇| cos φ̃ dφ̃|dl. (4.19)

Now, since dl is the length element parallel to V , we have dl/dt = |V | and of course
ads/dt = Vs. Now |Vs| = |V · n| = γ̇(1− A)|xy|/as, so

P sh dS =
P sh

0 a
4s3c(2− B∗)s| cos φ̃ dφ̃ ds|

2(1− A)|xy| . (4.20)

Now the value P sh
0 is equal to the value of P c (which is calculated numerically) at

θ = π/2. Because the upstream boundary condition is only known numerically, this
equation, like that in § 4.2.2, may only be used in numerical calculations. However,
once the probability has been calculated on the contact surface, P sh

0 is known and
therefore P sh dS may be found without further integration.

We need information about the shape of the sheet in order to express x and y as a
function of s and φ̃. We use the form of the trajectories (4.3), and, applying the initial
condition x = 0, y = as cos φ̃ at s = sc to determine ξ2 and ξ3, we obtain

x2

a2s2
= 1− φ2(s)

φ2(sc)

s2c
s2

+
φ2(s)

s2
[Ψ (sc)−Ψ (s)], (4.21)

y2

a2s2
=

φ2(s)

φ2(sc)

s2c
s2

cos2 φ̃− φ2(s)

s2
[Ψ (sc)−Ψ (s)]. (4.22)
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4.3. Calculation of the normal stresses

Using (2.5)–(2.6) and (4.2) we can show that the normal stresses N1 = Σ11 − Σ22,
N2 = Σ22 − Σ33 will be given by

N1 =
15c2µγ̇

4π

∫
r>2a

n1n2(n
2
1 − n2

2)M(s)p(r)
dr

a3

+
9c2µγ̇

32π

∫
contact

β5

[
(Fc · n)
µγ̇πa2

(n2
1 − n2

2)− Fc1n1 − Fc2n2

µγ̇πa2

]
p(r)

dr

a3
+ O(c3), (4.23)

N2 =
15c2µγ̇

4π

∫
r>2a

n1n2[L(s) + (n2
2 − n2

3)M(s)]p(r)
dr

a3

+
9c2µγ̇

32π

∫
contact

β5

[
(Fc · n)
µγ̇πa2

(n2
2 − n2

3)− (Fc2n2 − Fc3n3)

µγ̇πa2

]
p(r)

dr

a3
+ O(c3), (4.24)

and the contribution to the integrals from e is zero. We express the sub-terms of
these expressions as

Ni =
15c2µ|γ̇|

4π
(N̂i

bulk + N̂
i,S
contact + N̂i

sheet ) +
9c2µ|γ̇|

32π
N̂
i,D
contact + O(c3), (4.25)

where i = 1 or 2.

4.3.1. Bulk region

In the bulk, F = 0 since the particles are not in contact, and the contributions to
the normal stresses are thus

N̂1
bulk =

∫
r>2a

n1n2(n
2
1 − n2

2)M(s)p(r)ds, (4.26)

N̂2
bulk =

∫
r>2a

n1n2{L(s) + (n2
2 − n2

3)M(s)}p(r)ds. (4.27)

Throughout the bulk, we have

p(r) = C(ξ2, ξ3)q(s), (4.28)

in which C ≡ 1 except on closed orbits. Now s is an even function of n1, whereas
the integrand in each case is an odd function of n1. Thus the contribution from any
trajectory along which n1 is symmetrically positive and negative must be zero. This
case includes any closed orbits and also the unbounded trajectories which do not
intersect the contact surface.

The only non-zero contribution is therefore from the region of trajectories entering
from infinity and intersecting the contact surface. Because they are coming from
infinity, these trajectories satisfy (2.21). This region can be expressed as

{xy < 0}∩
{
y2 + z2 6 a2φ2(s)

[
s2c

φ2(sc)
−Ψ (sc) +Ψ (s)

]}
∩{y2 > a2φ2(s)Ψ (s)}, (4.29)

which becomes

{sin θ cos θ cosφ < 0} ∩
{

sin2 θ 6
φ2(s)

s2

[
s2c

φ2(sc)
−Ψ (sc) +Ψ (s)

]}
∩
{

sin2 θ cos2 φ >
φ2(s)

s2
Ψ (s)

}
. (4.30)
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This region only exists if Ψ (sc)φ
2(sc) 6 s2c , i.e. if there is an intersection between the

contact surface and the open trajectories. As discussed in § 4.1, this case corresponds
to the reasonable constraint ζ > 2× 10−4.

Performing the integral over φ first and then over θ, the first integral (4.26) becomes

N̂1
bulk =

−4

3φ3(sc)
(s2c − φ2(sc)Ψ (sc))

3/2

×
∫ ∞
sc

M(s)

(1− A(s))s3

[
s2 + φ2(s)

( −s2c
φ2(sc)

− 2Ψ (s) +Ψ (sc)

)]
ds, (4.31)

and the second integral (4.27)

N̂2
bulk =

−4

15φ3(sc)
(s2c − φ2(sc)Ψ (sc))

3/2

×
∫ ∞
sc

{
M(s)φ2(s)

(1− A(s))s3

[
s2c

φ2(sc)
+ 5Ψ (s)−Ψ (sc)

]
+

5L(s)

s(1− A(s))

}
ds. (4.32)

4.3.2. Contact surface

In the contact region we have calculated P c numerically, and so the total stress
contributions N̂i,S

contact and N̂
i,D
contact must also be calculated numerically. As for strain,

we convert the volume integrals to surface integrals using P c = ap ds. We substitute
(4.8) and (4.9) into (2.14) and (2.18) for the force dipole. Substituting the definition
dS = a2s2c sin θ dθ dφ and using the variables we introduced for calculating the
probability, X = sinφ, Y = sin θ, we obtain

N̂
1,S
contact = −2M∗s2c

∫ 1

−1

∫ 1

0

Y 2(1− 2Y 2 + Y 2X2)
P c

a
dY dX, (4.33)

N̂
2,S
contact = −2s2c

∫ 1

−1

∫ 1

0

Y 2(L∗ + Y 2(1− 2X2)M∗)
P c

a
dY dX, (4.34)

N̂
1,D
roll =

2β2β5

πβ1

s2c

∫ 1

−1

∫ 1

0

Y 2(1− 2Y 2 + Y 2X2)
P c

a
dY dX, (4.35)

N̂
2,D
roll =

β2β5

πβ1

s2c

∫ 1

−1

∫ 1

0

Y 2(2Y 2(1− 2X2)− 1)
P c

a
dY dX, (4.36)

N̂
1,D
slip = −2(1− A∗)β5

πβ3

s3cν

∫ 1

−1

∫ 1

0

Y 3

f(X,Y )
(1− 2Y 2 + Y 2X2)

P c

a
dY dX, (4.37)

N̂
2,D
slip = − (1− A∗)β5

πβ3

s3cν

∫ 1

−1

∫ 1

0

Y 3

f(X,Y )
(2Y 2(1− 2X2)− 1)

P c

a
dY dX, (4.38)

with f(X,Y ) as defined in (4.18), so that

f2(X,Y ) =
|(I − nn) ·E · n|2

γ̇2(1−X2)(1− Y 2)
. (4.39)

4.3.3. Border of the shadow region

On the sheet surface, the particles are not in contact, and so there is no contribution
to the stress from the contact force dipole. Therefore (4.26) and (4.27) hold, as they
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did in the bulk. On the sheet (4.20) holds, and so we have∫
sheet

[. . .]p(r)dr =

∫
sheet

[. . .]P sh dS (4.40)

= 1
2
a4s3c(2− B∗)

∫
sheet

[. . .]
P sh

0 (φ̃)s

|xy| | cos φ̃ dφ̃| ds

(1− A(s))
, (4.41)

giving us, since xy = a2s2n1n2 > 0 in the relevant region,

N̂1
sheet =

s3c(2− B∗)
2

∫
sheet

(n2
1 − n2

2)M(s)
P sh

0 (φ̃)

a

| cos φ̃ dφ̃|ds
s(1− A(s))

, (4.42)

N̂2
sheet =

s3c(2− B∗)
2

∫
sheet

{L(s) + (n2
2 − n2

3)M(s)}P
sh
0 (φ̃)

a

| cos φ̃ dφ̃|ds
s(1− A(s))

. (4.43)

The components of n are given by (4.21) and (4.22), and the integrals are carried out
numerically.

4.4. Summary of numerical normal stress results

At order c in this calculation, the stress is Newtonian (with an enhanced viscosity),
and so the normal stress differences are zero to O(c). They appear at order c2, because
of roughness.

4.4.1. Comparison with drops

In the case ν = 0 (which is in many ways similar to the case of liquid spheres) the
contact probability distribution can be calculated analytically, and is given by

P ∗ =
asc

3(1− B∗)φ3(sc)

{
1−

[
s2cB

∗ + 2(1− B∗)φ2(sc)Ψ (sc)

s2c(B
∗ + 2(1− B∗) sin2 θ cos2 φ)

]3/2
}
. (4.44)

The angle integrals may then be carried out analytically, and (after considerable
algebra) we obtain

N̂1 = Φ (2Y− 10Z)M∗ + (Y− sin5 τ)I, (4.45)

N̂2 = Φ
(
8ZM∗ − 2Y(L∗ +M∗)

)
+
(
4 sin5 τ/5− 2Y) I, (4.46)

where N̂i = Ni/c
2µ|γ̇|,

Y = sin3 τ/3 + cos3 τ(τ− tan τ), (4.47)

Z = (2− B∗)[sin5 τ/5 + cos3 τ(3τ/2− tan τ− sin 2τ/4)]/[6(1− B∗)], (4.48)

sin2 τ = 2(1− B∗)[s2c − φ2(sc)Ψ (sc)]/[s
2
c(2− B∗)], (4.49)

I =
4s5c

3φ5(sc)

(
2− B∗

2(1− B∗)
)5/2 ∫ ∞

s=sc

M(s)φ2(s) ds

s3(1− A(s))
, (4.50)

and

Φ =
2s3c

3(1− B∗)φ3(sc)

(
2− B∗

2(1− B∗)
)3/2

, (4.51)

which matches the results of Zinchenko (1984) in the limit sc → 2, if the solid
sphere mobility functions are substituted into his expression in place of the fluid
droplet mobilities. For further verification of the numerical work, a simple program
to calculate this result was written and gives results which agree with those from the
general code.
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Figure 6. The negative scaled normal stresses plotted against the dimensionless roughness height

for ν = 0, with the solid and dotted lines representing −N̂1 and −N̂2 respectively.
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Figure 7. The dependence of the normal stress differences, N̂1 (solid line) and N̂2 (dotted line), on
the friction coefficient, ν, for a physically plausible value of the roughness height, ζ = 3× 10−3.

4.4.2. Numerical results

We calculated the two normal stress factors N̂i, which depend only on ζ and ν.
Using (4.25), these are

N̂i =
15

4π
(N̂i

bulk + N̂
i,S
contact + N̂i

sheet ) +
9

16π
N̂
i,D
contact . (4.52)

In figure 6 we plot N̂1 and N̂2 against ζ for the slipping or hard-sphere limit ν = 0.
In each case, both normal stress differences are negative, with N̂1 having the larger
modulus. Below the critical roughness height ζ = 2.11 × 10−4, no open trajectories
intersect with the contact surface, and so no normal stresses are generated. The results
show a strong decrease in the normal stresses as ζ is increased from this critical value.

In figure 7 we plot the two scaled normal stress differences against the friction
coefficient, ν, for a typical value of the roughness height, ζ = 3×10−3. The dependence
of the stresses on ν is similar for N̂1 to that for N̂2; as ν is increased from 0 to 0.5
(with likely physical values being around 0.1–0.4), the size of N̂1 increases by 30%
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Figure 8. The contributions to the scaled normal stresses, plotted against the dimensionless rough-

ness height, with fixed ν = 0.3. The solid and dotted lines are for N̂1 and N̂2 respectively, with the

upper curves being the contact contribution to N̂1 and the bulk and sheet regions contribution to

N̂2, and vice versa for the lower curves.

and that of N̂2 by 28%. In figure 8, we take our sample value ν = 0.3 and plot the
different contributions to the normal stresses against ζ. In all cases, the contribution
from the bulk is positive, and that from the sheet negative, so we show instead their
sum, which indicates which is more important. We observe that there is a competition
between the effect of the contact region and that of the rest of the flow. For the first
normal stress difference, the majority of the flow causes a negative contribution with
the contact contribution smaller and positive, whereas, for the second normal stress
difference, the contact contribution is negative and dominates over the smaller, but
positive, contribution from the rest of the flow.

5. Concluding remarks
We have investigated the rheology to O(c2) of a dilute suspension of rough spheres.

Because the stress in the suspension is dependent on the flow history, the calculation
cannot be carried out for general flows. Instead, we have investigated two steady
flows: axisymmetric straining, and shear.

In a steady axisymmetric straining flow, the stress is Newtonian and can be
represented by a scalar viscosity. In such flows, the effect of particle contacts due to
surface roughness is always to lower the O(c2) coefficient of the viscosity from the
value 6.9 for smooth spheres. The effect of increasing the coefficient of friction is to
lower the total viscosity. This is because a high coefficient of friction tends to induce
rolling (rather than slipping) motion when the particles are in contact, thus reducing
the lubrication stresses. Note that the lowering of the viscosity in a dilute suspension
due to particle contact is an effect which we would not expect to see in a concentrated
suspension. If many spheres were interacting closely, the interparticle contacts and
friction would probably increase the overall viscosity, and possibly cause ‘jamming’
earlier than would be seen for smooth spheres.

In shear flow, the viscosity cannot be uniquely determined, because of closed orbits
of two particles which continue indefinitely unless some other effect is taken into
account. However, if the roughness height is above a critical value ζ = 2.11 × 10−4,
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there are non-zero normal stress differences which may be determined despite the
closed orbits. These normal stress differences are negative for physical values of the
roughness height, with N2 slightly smaller in magnitude than N1. They depend only
weakly on the coefficient of friction, ν.

As the concentration increases, three-particle and even many-particle interactions
will become important, and we would expect that the sheet and wake regions might
be destroyed. However, the contact regions would be relatively unaffected by the
presence of other particles. In straining flows, the viscosity-lowering effect of the
excluded volume dominates the remaining contributions (though for some parameter
values it is of comparable size to the contribution from the slipping region – see
figure 3) and so the viscosity at moderate concentrations will probably still be lower
than that for smooth spheres, though the effect may be less marked. However, at yet
higher concentrations when a dilute theory is not applicable, we expect the viscosity
to rise as discussed above, so that there is some critical concentration above which
our results are not qualitatively useful. In shear, on the other hand, both the bulk and
the contact contributions are significant, and so increasing the concentration even a
moderate amount would probably have a marked effect on the normal stresses. If
the contribution from contact does indeed remain unchanged, then N1 will remain
negative but smaller in magnitude, whereas it is possible that N2 could change sign.
However, recent simulations carried out by Foss & Brady (2000) indicate that both
normal stresses remain negative as the concentration increases, so perhaps the dilute
asymptotics are more robust than one might suspect.

The authors thank Dr Alexander Zinchenko for advice on the analysis and Profes-
sors Jeffrey Morris and John Brady for helpful discussions, and acknowledge funding
from the US National Science Foundation.

Appendix A. Derivation of the form of the stresslet
We consider the average stress in a suspension consisting of fluid (F), individual

spheres which are force-free (S ) and pairs of spheres (P ) which exert equal and
opposite forces on each other:

〈σij〉 =
1

V

∫
VF+VS+VP

σij dV (A 1)

=
1

V

∫
VF

σij dV +
1

V

N∑
α=1

∫
Sα

σij dV +
1

V

M∑
β=1

∫
Pβ

σij dV . (A 2)

Here σij is the local stress tensor at a point, and its average 〈σij〉 over the whole
volume is the total stresslet which must be averaged over particle configurations to
give Σij . Note that in a solid, σij = 1

2
∇k(σikxj + σjkxi) and eij = 0, so

〈σij〉 − 〈p〉δij − 2µ〈eij〉

=
1

V

N∑
α=1

∫
Sα

1
2
∇k(σikxj + σjkxi) dV +

1

V

M∑
β=1

∫
Pβ

1
2
∇k(σikxj + σjkxi) dV (A 3)

=
1

V

N∑
α=1

∫
Sα

1
2
(σikxj + σjkxi)nk dS +

1

V

M∑
β=1

∫
Pβ

1
2
(σikxj + σjkxi)nk dS. (A 4)
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We then consider one of the pairs Pβ . Each sphere is in equilibrium, that is, the net
force acting on it is zero. Thus, the hydrodynamic force balances the contact force on
each sphere, yielding∫

Pβ

1
2
(σikxj + σjkxi)nk dS =

∫
Pβ

1
2
(σHik xj + σHjkxi)nk dS +

∫
Pβ

1
2
(σCikxj + σCjkxi)nk dS, (A 5)

in which σC is the contribution from the contact force and σH is the hydrodynamic
stress balancing it. If the pair Pβ consists of two spheres Sαm centred on xαm for
m = 1, 2,∫

Pβ

1
2
(σikxj + σjkxi)nk dS =

2∑
m=1

∫
Sαm

1
2
(σHik (xj − xαmj ) + σHjk(xi − xαmi ))nk dS

+

2∑
m=1

∫
Sαm

1
2
(σCik(xj − xαmj ) + σCjk(xi − xαmi ))nk dS. (A 6)

Now the stress distribution due to the contact stress on sphere 1 (which exerts a force
F on the fluid at a point xC = 1

2
(xα1 + xα2 )) is σCij nj = Fiδ(x − xC). A similar form

(with the force reversed) holds for sphere 2, giving∫
Pβ

1
2
(σikxj + σjkxi)nk dS =

2∑
m=1

∫
Sαm

1
2
(σHik (xj − xαmj ) + σHjk(xi − xαmi ))nk dS

+ 1
2
[Fi(x

α2

j − xα1

j ) + Fj(x
α2

i − xα1

i )]. (A 7)

The first of these terms is simply the sum of two stresslets, one for each sphere, centred
on the sphere, arising due to the change in motion engendered by the contact force.
As such, by the linearity of Stokes flow it is equivalent to the sum of two independent
stresslets. The first is the stresslet caused by an equivalent pair of force-free particles
in the ambient flow. The second is the stresslet caused by the particles due to the
contact forces and torques acting on them, in a fluid which is otherwise quiescent.

We deduce that the total stresslet generated by a pair of particles at 0 and r is
given by that in the absence of contact forces (given by Batchelor & Green 1972b)
plus an extra contribution (neglecting isotropic terms) of

D = 2DH + 1
2
(Fcr + rFc − 2(Fc · r)I ), (A 8)

where Fc is the force exerted by particle 1 on the fluid, equal and opposite to that
exerted by particle 2, and the term DH is simply the stresslet generated by the forces
and torques acting on one of the two spheres in a quiescent fluid. It is multiplied by
2 for the contributions from both particles of the pair. It can be found easily from
the mobility formulation for relative motion of two spheres in a quiescent fluid (Kim
& Karrila 1991, page 179):

DH = (g12 − g11) ·Fc + (h11 + h12) ·T . (A 9)

Thus, the contribution from each individual particle, Sc, is half the deviatoric part
of the stresslet given in (A 8), and since T = − 1

2
Fc × r, and r = ascn, after some

manipulation we find

Sc(x0, x0 + r) = 1
2
as[1− A(s)](Fc · n)(nn− 1

3
I )

− 1
4
as[1 + B(s)− 2(yh11 + yh12)](Fcn+ nFc − 2nn(Fc · n)) (A 10)

as in (2.6).
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Appendix B. Definition of the constants βi
We use the definitions of the two-sphere mobility functions given in Kim & Karrila

(1991) to define the constants βi as

β1 = 2a(ya11 − ya12)− 1
2
a3s2c(y

c
11 + yc12), (B 1)

β2 = sc[B
∗ − 1 + 2(yh11 + yh12)], (B 2)

β3 = 2a(xa11 − xa12), (B 3)

β4 = 2(yh11 + yh12) + a2(β2/β1)[(y
b
11 − yb12) + 1

2
asc(y

c
11 + yc12)], (B 4)

β5 = sc[B
∗ + 1− 2(yh11 + yh12)], (B 5)

β6 = (sc(1− A∗)/β3)[2a(y
a
11 − ya12)/sc + a2(yb11 − yb12)]. (B 6)

They are all evaluated at s = sc and specifically defined to be dimensionless, and they
are positive in the limit ζ → 0.

For the numerical integrations of §§ 3 and 4, we need numerical forms of the
mobilities at all separations. Kim & Mifflin (1985) presented a collocation method
for calculation of the resistance functions for two equal solid spheres in Stokes flow.
They have made available their code, along with tables presenting the results at forty
equidistant points from s = 2.1 to s = 6.0. We used the code to extend the range of
these tables. From the resistance functions thus defined, we calculated the mobility
functions A, B, J , K , L and M. In the region s < 2.0025, the near-field asymptotic
forms (from those given in Kim & Karrila 1991) were used, and in the region s > 6,
the far-field ones. The function φ(s) was calculated by numerical integration in the
main region from 2.0025 to 6.0, with the far-field and near-field integrations being
performed analytically.
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